Mapping Census Data in R

Workshop - Fall 2024

2024-08-15

Installing the packages

We are going to start by installing the following packages

install.packages(c("tidycensus", "tidyverse", "mapview", "ggspatial", "leafsync", "ggplot2")

tidycensus: allows users to interface with a select number of the US Census Bureau's data APIs and return tidyverse-ready data frames, optionally with simple feature geometry included.

tidyverse: is a collection of open-source R packages that help with data science tasks like importing, tidying, manipulating, and visualizing data

mapview: is a tool for quickly creating interactive maps of spatial data.

ggspatial: is a framework for interacting with spatial data using ggplot2 to create maps.

leafsync: is a plugin for leaflet to produce potentially synchronised small multiples of leaflet web maps wrapping Leaflet.

The tidycensus package

In this tutorial we will be using tidycensus package, developed by Kyle Walker.

tidycensus is an R package that allows users to interface with a select number of the US Census Bureau's data APIs and return tidyverse-ready data frames, optionally with simple feature geometry included.

Essential functions

get_decennial(), which requests data from the US Decennial Census APIs for 2000, 2010, and 2020.

get_acs(), which requests data from the 1-year and 5-year American Community Survey samples. Data are available from the 1-year ACS back to 2005 and the 5-year ACS back to 2005-2009.

get_estimates(), an interface to the Population Estimates APIs. These datasets include yearly estimates of population characteristics by state, county, and metropolitan area, along with components of change demographic estimates like births, deaths, and migration rates.

get_pums(), which accesses data from the ACS Public Use Microdata Sample APIs. These samples include anonymized individual-level records from the ACS organized by household and are highly useful for many different social science analyses. get_pums() is covered in more depth in Chapters 9 and 10.

get_flows(), an interface to the ACS Migration Flows APIs. Includes information on in- and out-flows from various geographies for the 5-year ACS samples, enabling origin-destination analyses.

Get ACS data

About the ACS

The American Community Survey ACS is a nationwide survey that collects and publishes information about the US population's social, economic, housing, and demographic characteristics.

The ACS provides data on topics such as: income, jobs and occupations, educational attainment, veterans, and housing tenure.

The ACS produces two types of estimates:

- 1-year estimates: Available for geographic areas with populations of 65,000 or more. These estimates are more current.
- 5-year estimates: Available for all geographic areas, including census tracts and block groups. These estimates are more statistically reliable, especially for smaller population groups

Getting a specific variable for all counties in one state.

We are going to start exploring census data at the county level. We are going to ask for a table with the total population for each county in the State of Pennsylvania.

1. Load the package with the following command

```
library(tidycensus)
```

```
Warning: package 'tidycensus' was built under R version 4.3.3
```

2. Create a new object named latino_pop_PA with the following code

Be aware that the property geography = is being specified with the string "county" to get data at this level. We are setting the property state = to retrieve all counties in Pennsylvania by defining the value "PA". The line variables = comtains the identificator for the total of population in the original census table. We will see how to identify the variables ID in the following steps.

```
latino_pop_PA <- get_acs(
  geography = "county",
  state = "PA",
  variables = "B03001_003",
  year = 2022
)</pre>
```

Getting data from the 2018-2022 5-year ACS

latino_pop_PA

#	A tibb	le: 67 x 5			
	GEOID	NAME	variable	estimate	moe
	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>
1	42001	Adams County, Pennsylvania	B03001_003	7688	NA
2	42003	Allegheny County, Pennsylvania	B03001_003	29272	NA
3	42005	Armstrong County, Pennsylvania	B03001_003	560	NA
4	42007	Beaver County, Pennsylvania	B03001_003	3227	NA
5	42009	Bedford County, Pennsylvania	B03001_003	598	NA
6	42011	Berks County, Pennsylvania	B03001_003	99460	NA
7	42013	Blair County, Pennsylvania	B03001_003	1721	NA
8	42015	Bradford County, Pennsylvania	B03001_003	946	NA

9	42017	Bucks	County,	Pennsylvania	B03001_003	38195	NA
10	42019	Butler	County,	, Pennsylvania	B03001_003	3391	NA
# :	i 57 mo	ore row	IS				

The column estimate shows the number of latino population for each county in Pennsylvania, while the column moe shows the margin of error around it.

Exploring the original census file variables

As mentioned, each variable has its unique identifier in the original file. You will need to know the identifier of the variables you want to get in order to process a file in your project. To explore the variables in the original files you can use the load_variables() function specifying the year and dataset.

For example you can use the following to get the ACS 2022 5-year-estimate variables.

```
vars <- load_variables(2022, "acs5")</pre>
```

head(vars)

#	A tibble: 6	x 4		
	name	label	concept	geography
	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
1	B01001A_001	Estimate!!Total:	Sex by Age (Whi~	tract
2	B01001A_002	Estimate!!Total:!!Male:	Sex by Age (Whi~	tract
3	B01001A_003	<pre>Estimate!!Total:!!Male:!!Under 5 years</pre>	Sex by Age (Whi~	tract
4	B01001A_004	Estimate!!Total:!!Male:!!5 to 9 years	Sex by Age (Whi~	tract
5	B01001A_005	<pre>Estimate!!Total:!!Male:!!10 to 14 years</pre>	Sex by Age (Whi~	tract
6	B01001A_006	<pre>Estimate!!Total:!!Male:!!15 to 17 years</pre>	Sex by Age (Whi~	tract

The resulting table will have a column name with the variable code (you will input this text in the get_acs() function), a label column with the description fo the variable, a concept with the group variable and a geography column specifying the smallest level at which the variable is available.

For our purpose, the ACS 2022 variables that contain the number of people of Hispanic or Latino Origin are from row 580 to 609. Here is an extract of these rows.

vars[580:609,]

```
# A tibble: 30 x 4
  name
              label
                                                               concept geography
              <chr>
                                                               <chr>
                                                                       <chr>
   <chr>
 1 B03001_002 Estimate!!Total:!!Not Hispanic or Latino
                                                               Hispan~ tract
2 B03001 003 Estimate!!Total:!!Hispanic or Latino:
                                                               Hispan~ tract
3 B03001_004 Estimate!!Total:!!Hispanic or Latino:!!Mexican
                                                               Hispan~ tract
4 B03001_005 Estimate!!Total:!!Hispanic or Latino:!!Puerto R~ Hispan~ tract
5 B03001_006 Estimate!!Total:!!Hispanic or Latino:!!Cuban
                                                               Hispan~ tract
6 B03001_007 Estimate!!Total:!!Hispanic or Latino:!!Dominica~ Hispan~ tract
7 B03001_008 Estimate!!Total:!!Hispanic or Latino:!!Central ~ Hispan~ tract
8 B03001_009 Estimate!!Total:!!Hispanic or Latino:!!Central ~ Hispan~ tract
9 B03001_010 Estimate!!Total:!!Hispanic or Latino:!!Central ~ Hispan~ tract
10 B03001_011 Estimate!!Total:!!Hispanic or Latino:!!Central ~ Hispan~ tract
# i 20 more rows
```

Getting tables from the ACS

Another way to get variables from the ACS is to use the table = property in tidycensus. Instead of returning one single variable as we did in the previous step, this will return a table with all variables in the B03001 set that contains all latino population B03001_003, along with:

Code	Variable
B03001_004	Mexican
B03001_005	Puerto Rican
B03001_006	Cuban
B03001_007	Dominican
B03001_009	Costa Rican
B03001_010	Guatemalan
B03001_011	Honduran
B03001_012	Nicaraguan
B03001_013	Panamanian
B03001_014	Salvadoran
B03001_015	Other Central American
B03001 017	Argentinian
B03001 018	Bolivian
B03001 019	Chilean
B03001 020	Colombian
B03001 021	Ecuadorian
B03001_022	Paraguayan

Table 1: B03001 Table

Code	Variable
B03001_023	Peruvian
B03001_024	Uruguayan
$B03001_{025}$	Venezuelan
B03001_026	Other South American
B03001_027	Other Hispanic or Latino

```
latino_table_PA <- get_acs(
  geography = "county",
  state = "PA",
  ##county = "Philadelphia",
  table = "B03001",
  year = 2022,
  output = "wide"
)</pre>
```

Getting data from the 2018-2022 5-year ACS

Loading ACS5 variables for 2022 from table B03001. To cache this dataset for faster access to

latino_table_PA

# .	A tibb	Le: 67 x 64					
	GEOID	NAME	B03001_001E	B03001_001N	1 B03001_002E	B03001_002M	B03001_003E
	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl;< td=""><td><pre><dbl></dbl></pre></td><td><dbl></dbl></td><td><dbl></dbl></td></dbl;<>	<pre><dbl></dbl></pre>	<dbl></dbl>	<dbl></dbl>
1	42001	Adams Coun~	104604	N	96916	NA	7688
2	42003	Allegheny ~	1245310	NA	1216038	NA	29272
3	42005	Armstrong ~	65538	NA	64978	NA	560
4	42007	Beaver Cou~	167629	NA	164402	NA	3227
5	42009	Bedford Co~	47613	NA	47015	NA	598
6	42011	Berks Coun~	428483	NA	329023	NA	99460
7	42013	Blair Coun~	122640	NA	120919	NA	1721
8	42015	Bradford C~	60159	NA	59213	NA	946
9	42017	Bucks Coun~	645163	NA	606968	NA	38195
10	42019	Butler Cou~	194562	NA	191171	NA	3391
# :	i 57 mo	ore rows					
# :	i 57 mo	ore variables	: B03001_003	M <dbl>, B</dbl>	3001_004E <d< td=""><td>bl>, B03001_0</td><td>004M <dbl>,</dbl></td></d<>	bl>, B03001_0	004M <dbl>,</dbl>
#	B0300	01_005E <dbl></dbl>	, B03001_005	M <dbl>, BO</dbl>	3001_006E <d< td=""><td>bl>, B03001_0</td><td>006M <dbl>,</dbl></td></d<>	bl>, B03001_0	006M <dbl>,</dbl>
#	B0300	01_007E <dbl></dbl>	, B03001_007	M <dbl>, B</dbl>	03001_008E <d< td=""><td>bl>, B03001_0</td><td>008M <dbl>,</dbl></td></d<>	bl>, B03001_0	008M <dbl>,</dbl>
#	B0300	01 009E <dbl></dbl>	B03001 009	M <dbl>, B0</dbl>)3001 010E <d< td=""><td>bl>, B03001 (</td><td>010M <dbl>,</dbl></td></d<>	bl>, B03001 (010M <dbl>,</dbl>

B03001_011E <dbl>, B03001_011M <dbl>, B03001_012E <dbl>, B03001_012M <dbl>, # B03001_013E <dbl>, B03001_013M <dbl>, B03001_014E <dbl>, ...

Note that this table contains both the estimate for the variable end the error. All variable names ending with E contain the estimate.

Exploring the percentage of latino population by county

To explore the percentage of latino population we arw going to create a graph with bars showing this variable. First, we clean up the county names to contain the name of the county only.

latino_table_PA\$NAME <- gsub(" County|, Pennsylvania", "", latino_table_PA\$NAME)</pre>

Second, we calculate the percentage of latino population by dividing the number of latinos by the total population on each county. We add this new variable latino_percentage to our table.

```
latino_table_PA$latino_percentage <- (latino_table_PA$B03001_003E / latino_table_PA$B03001_00
```

Lastly, we plot the percentage in bars using the ggplot() and geom_bar() options.

```
library("ggplot2")
ggplot(latino_table_PA, aes(x = reorder(NAME, -latino_percentage), y = latino_percentage)) +
geom_bar(stat = "identity", fill = "darkred") +
labs(
    x = "County",
    y = "Latino Population Percentage",
    title = "Percentage of Latino Population by County in Pennsylvania"
    ) +
    theme_minimal() +
    theme(axis.text.x = element text(angle = 90, hjust = 1))
```


As seen in the graph, Lehigh County has the highest percentage of latino population (more than 35%) followed by Berks and Monroe (more than 20%) and Philadelphia, Luzerne, Northhampton, Lebanon, Pike, Lancaster and Dauphin (more than 10%).

Creating a map with the ACS data

In this section we are going to answer the question:

```
Guiding question
```

What is the spatial distribution of the percentage of latino population in the State of Pennsylvania?

To do so, we are going to explore additional properties on the get_acs() function and how to use it to generate different types of maps.

Getting the geometry from the census

To build a map with the census and ACS data we will need the geometry (polygons) of the geography we are adding the data to. In this exmaple, the counties.

The geometry = TRUE option of the tidycensus package has the ability to download an additional column that stores a polygon geometry of the corresponding geographic level, in this case the counties.

If you rerun the code below, adding the geometry = TRUE option, the resulting table will have an additional column.

```
latino_table_PA <- get_acs(</pre>
1
     geography = "county",
\mathbf{2}
     state = "PA",
3
     table = "B03001",
4
     year = 2022,
\mathbf{5}
     output = "wide",
6
     geometry = TRUE
7
   )
8
```

We can plot the polygons with the following line.

```
plot(latino_table_PA$geometry)
```


Creating a choroplet map from an ACS variable

To answer our guiding question we are going to plot the percentage of latino population in a map.

First, we are going to calculate the percentage of latino population on the table that contains geometry.

latino_table_PA\$latino_percentage <- (latino_table_PA\$B03001_003E / latino_table_PA\$B03001_0

Now, we can simply use the same ggpllot code line we used before to get a map of this variable. We set the data property to point to our latino_table_PA table and the fill option to the variable that contains the percentage we created in the previous step. The geom_sf() function is used to read the geomtry field as polygons and render them in a map.

Customizing the choroplet map

For a customized version of the map, we can use the scale_fill_distiller() function that allows choosing from different map color palettes and labs() function to specify the general title, footnote caption and key title of the map.

If you want to know more about the color ramps go to ColorBrewer.

Percenatge

Percentage of latino population by county in Pennsylvania, 2022

Data source: 2022 5-year ACS, US Census Bureau

Exercise 1: Exploring other geometries, census tracts.

Although the counties map show certain spatial pattern, we know that not all the county is the same internally. If we explore this variable with more granularity, we might see different patterns.

Lets re-do the whole process but this time getting the data at the census tract level.

• Start by creating a table latino_table_tracts_PA and setting the geography = to "tract". All the rest can remain the same.

i Attention

This process might take longer than the ones we run before due to a higher number of records.

```
latino_table_tracts_PA <- get_acs(
  geography = "tract",
  state = "PA",
  table = "B03001",
  year = 2022,
  output = "wide",
  geometry = TRUE
)</pre>
```

• Now, lets calculate the percentage of latino population on each tract.

```
latino_table_tracts_PA$latino_percentage <- ifelse(latino_table_tracts_PA$B03001_003E>0, 100
```

In this case we used an **ifelse** clause because some tracts have 0 latino population and we want to avoid having null values in our results.

• And lastly, lets create the map using the table and variable we just created.

Percentage of latino population by tract in Pennsylvania, 2022

Data source: 2022 5-year ACS, US Census Bureau

Where did the people go?

In this case, it is convenient to change the polygon outline thickness by adding linewidth = 0.01 to the geom_sf() function.

We can also add the county outlines to identify them by addind borders("county", "pennsylvania").

Percentage of latino population by tract in Pennsylvania, 2022

Data source: 2022 5-year ACS, US Census Bureau

Exercise 2: Focusing on a specific county: Lehigh County.

We are going to focus on the county with the highest percentage of Latino population, Lehigh County.

For that, lets start generating a specific table for that county.

Notice that we set the table name to lehigh_latino, the geography = tract and added county = "Lehigh" to get all tracts in Lehigh County.

```
lehigh_latino <- get_acs(</pre>
1
      geography = "tract",
\mathbf{2}
     state = "PA",
3
     county = "Lehigh",
^{4}
      table = "B03001",
\mathbf{5}
     year = 2022,
6
      output = "wide",
7
      geometry = TRUE
8
   )
9
```

Now lest calculate the percentage of latinos using the same code we used before. Be sure to use the correct table name lehigh_latino.

lehigh_latino\$latino_percentage <- ifelse(lehigh_latino\$B03001_003E>0, 100* (lehigh_latino\$B

And now, lets generate a choroplet map as the last we did.

Data source: 2022 5-year ACS, US Census Bureau

Again, in this map we can see that the highest percentage of latino population is located towards the center of the county while the outter tracts have very low values.

Customized interactive maps with mapgl()

There are multiple ways you can customize your maps in R. We are going to explore the mapgl() package to create interactive maps.

The mapgl() package

The mapgl R package allows users to create interactive maps in R using the Mapbox GL JS and MapLibre GL JS libraries:

Features Create globe visualizations, layer objects to make filled maps, circle maps, heatmaps, and 3D graphics, and customize map styles and views.

Ease of use Designed to be intuitive for R users while still offering the capabilities of the Mapbox GL JS and MapLibre GL JS libraries

Flexibility Allows for more code to be written when making maps, but also gives users more flexibility in how they design their maps

Shiny web applications Includes utilities to use Mapbox and MapLibre maps in Shiny web applications

Find more information on the mapgl package.

Getting started with mapgl

The mappl package lets you create maps using Mapbox and Maplibre. These two are javascript libraries that render interactive maps in the web. For this demo, we are using Maplibre since it is open-source and free to use.

9 MapLibre

Lets start by installing the mappl package and calling the library with the code below.

install.packages("mapgl")

library(mapgl)

To initialize a map we will need the following line of code.

maplibre()

file:///private/tmp/Rtmpo9xoKH/file446531507f24/widget44651bcb2dc7.html screenshot completed

MapLibre | © CARTO, © OpenStreetMap contributors

▼

It will display a map of the world with the default basemap from CARTO's Voyager tiles.

You can set some things in the map by using style =, center =, zoom =, bearing =, pitch =, and others. We are going to initialize a map centered at Temple University Charles Library in Philadelphia, PA. To do so, I added center = c(-75.15541, 39.98215) the geographic coordinates of the building and zoom = 16 a zoom that is closer to this part of the city.

```
maplibre(
   center = c(-75.15541, 39.98215),
   zoom = 16,
)
```

file:///private/tmp/Rtmpo9xoKH/file44653704bd01/widget44651814a8df.html screenshot completed

MapLibre | © CARTO, © OpenStreetMap contributors

▼

Adding census data to maplibre

Now, we are going to initialize a map centered in the State of Pennsylvania using the table we created before latino_table_PA. We are going to store this map in the variable pa_map.

pa_map <- maplibre(bounds = latino_table_PA)</pre>

pa_map

file:///private/tmp/Rtmpo9xoKH/file44656204949b/widget44651ab87e63.html screenshot complete

MapLibre | © CARTO, © OpenStreetMap contributors

▼

In the following code, we are going to add a layer and a legend to our map. With the add_fill_layer() we are able to call the column = "latino_percentage from our source = latino_table_PA. We are setting a continuous color ramp using values between 1 and 40 to accomodate the colors between light yellow and dark orange.To improve the visualization of the reference data in the background we set fill_oppacity = 0.7.

To add a legend we simply used the same settings for values and colors that we used previously and added a title.

```
pa_map |>
  add_fill_layer(
  id = "pa_latino",
  source = latino_table_PA,
  fill_color = interpolate(
    column = "latino_percentage",
    values = c(1, 40),
    stops = c("lightyellow", "darkorange"),
    na_color = "lightgrey"
  ),
  fill_opacity = 0.7
 ) |>
  add_legend(
    "Percentage of Latino Population, 2022",
    values = c(1, 40),
    colors = c("lightyellow", "darkorange")
  )
```

file:////private/tmp/Rtmpo9xoKH/file44655e71c4ef/widget44657f385759.html screenshot complete

Percentage of Latino Population, 2022

1

40

MapLibre | © CARTO, © OpenStreetMap contributors

▼

Adding interactivity to your map

There are several ways you can make you map interactive. From adding navigation controls using add_navigation_control() to adding a popup and tooltip. In the following code, we also use a categorical styling instead of a continous color ramp.

```
latino_table_PA$popup <- glue::glue(</pre>
  "<strong>County: </strong>{latino_table_PA$NAME}<br>><strong>Percentage: </strong>{sprintf(
)
brewer_pal <- RColorBrewer::brewer.pal(6, "YlGnBu")</pre>
pa_map |>
  add_fill_layer(
    id = "pa_latino",
    source = latino_table_PA,
    fill_color = step_expr(
     column = "latino_percentage",
     base = brewer_pal[1],
      stops = brewer_pal[1:6],
      values = seq(0.8, 27.2, length.out = 6),
      na_color = "white"
    ),
    fill_opacity = 0.5,
    popup = "popup",
    tooltip = "latino_percentage",
   hover_options = list(
     fill_color = "yellow",
      fill_opacity = 1
    )
  ) |>
  add_legend(
    "Latino Population, 2022",
    values = c(
      "Less than 5%",
      "5%-10%",
      "10%-15%",
      "15%-20%",
      "20%-25%",
      "More than 25%"
    ),
```

```
colors = brewer_pal,
```

```
type = "categorical"
) |>
add_navigation_control()
```

file:///private/tmp/Rtmpo9xoKH/file4465299cf9f1/widget4465dd528f.html screenshot completed

MapLibre | © CARTO, © OpenStreetMap contributors

Exercise 3: Redo the interactive map for Philadelphia County

Now we are going to redo the interactive map for a specific county. We can use the same code we used in step 5.5 to create a new table for Philadelphia. We also calculated the percentage of latino population.

```
philly_latino <- get_acs(</pre>
1
      geography = "tract",
2
     state = "PA",
3
     county = "Philadelphia",
4
     table = "B03001",
\mathbf{5}
     year = 2022,
6
     output = "wide",
      geometry = TRUE
8
   )
9
10
   philly_latino$latino_percentage <- ifelse(</pre>
11
      philly_latino$B03001_003E > 0,
12
     round(100 * (philly_latino$B03001_003E / philly_latino$B03001_001E), 2),
13
      0
14
   )
15
```

We initialize the map with the following code.

```
philly_map <- maplibre(bounds = philly_latino)</pre>
```

Now, lets build the interactive map.

```
philly_latino$popup <- glue::glue(
    "<strong>Name: </strong>{philly_latino$GEOID}<br><strong>Percentage: </strong>{philly_latin
)
brewer_pal <- RColorBrewer::brewer.pal(9, "YlGnBu")
philly_map |>
    add_fill_layer(
    id = "philly_latino",
    source = philly_latino,
    fill_color = step_expr(
        column = "latino_percentage",
        base = brewer_pal[1],
```

```
stops = brewer_pal[1:9],
   values = seq(1, 92.03, length.out = 9),
   na_color = "white"
 ),
 fill_opacity = 0.5,
  popup = "popup",
 tooltip = "latino_percentage",
 hover_options = list(
   fill_color = "yellow",
   fill_opacity = 1
 )
) |>
add_legend(
  "Latino Population, Philadelphia 2022",
 values = c(
    "Less than 12%",
    "12% - 22%",
    "22% - 32%",
    "32% - 42%",
    "42% - 53%",
    "53% - 63%",
    "63% - 73%",
    "73% - 84%",
    "More than 84%"
  ),
 colors = brewer_pal,
 type = "categorical"
) |>
add_navigation_control()
```

file:////private/tmp/Rtmpo9xoKH/file44658003061/widget446544683461.html screenshot completed

Latino Population, Philadelphia 2022

Less than 12%
12% - 22%
22% - 32%
32% - 42%
42% - 53%
53% - 63%
63% - 73%
73% - 84%
More than 84%

MapLibre | © CARTO, © OpenStreetMap contributors

Workshop slides

Attribution

Open Geospatial Data by Felipe Valdez is licensed under CC BY-NC-SA 4.0